Static Symmetry Breaking in Circle Packing

نویسندگان

  • Alberto Costa
  • Pierre Hansen
  • Leo Liberti
چکیده

We present new Static Symmetry-Breaking Inequalities (SSBI) [11,6] for the problem of packing equal circles in a square [9]. The new SSBIs provide a marked computational improvement with respect to past work [1], though not yet at the level where a purely Mathematical Programming (MP) based spatial Branch-and-Bound (sBB) can be competitive with a Branch-and-Bound (BB) “boosted” by combinatorial and geometrical devices such as [9]. We consider the following formulation of Circle Packing in a Square (CPS) problem: given N ∈ N and L ∈ N, can N non-overlapping circles of unit radius be arranged in a square of side 2L? This is equivalent to the more usual formulation where one maximizes the number of non-overlapping circles of unit radius in a square of side 2L with L ∈ Q+: it suffices to consider the usual correspondence (via bisection) of optimization and decision problems, and to remark that for all instances of the second formulation with fractional square side length there exists an equivalent instance of the CPS described by integer data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the impact of symmetry-breaking constraints on spatial Branch-and-Bound for circle packing in a square

We study the problem of packing equal circles in a square from the mathematical programming point of view. We discuss different formulations, we analyse formulation symmetries, we propose some symmetry breaking constraints and show that not only do they tighten the convex relaxation bound, but they also ease the task of local NLP solution algorithms in finding feasible solutions. We solve the p...

متن کامل

Symmetry-breaking constraints for packing identical rectangles within polyhedra

Two problems related to packing identical rectangles within a polyhedron are tackled in the present work. Rectangles are allowed to differ only by horizontal or vertical translations and possibly ninety-degree rotations. The first considered problem consists in packing as many identical rectangles as possible within a given polyhedron, while the second problem consists in finding the smallest p...

متن کامل

Symmetries in Rectangular Block-Packing

The block-packing problem has applications in chip design, factory layout, container shipment optimization, scheduling and other areas. It has been actively studied in the last 20 years, but symmetry in packings has been neglected. Our work deals with symmetry in several formulations of block-packing, including optimization and constraint-satisfaction variants, as well as slicing and non-slicin...

متن کامل

A geometric inequality for circle packings

A geometric inequality among three triangles, originating in circle packing problems, is introduced. In order to prove it, we reduce the original formulation to the nonnegativity of a particular polynomial in four real indeterminates. Techniques based on sum of squares decompositions, semidefinite programming, and symmetry reduction are then applied to provide an easily verifiable nonnegativity...

متن کامل

Model Restarts for Structural Symmetry Breaking

There exist various methods to break symmetries. The two that concern us in this paper are static symmetry breaking where we add static constraints to the problem (see e.g. [1,3]) and symmetry breaking by dominance detection (SBDD) where we filter values based on a symmetric dominance analysis when comparing the current searchnode with those that were previously expanded [2,5]. The core task of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010